tunsafe-clang15/util.cpp
2018-12-16 21:47:26 +01:00

488 lines
11 KiB
C++

// SPDX-License-Identifier: AGPL-1.0-only
// Copyright (C) 2018 Ludvig Strigeus <info@tunsafe.com>. All Rights Reserved.
#include "stdafx.h"
#include <assert.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <string>
#if defined(OS_POSIX)
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#endif
#if defined(OS_MACOSX)
#include <mach/mach_time.h>
#endif // OS_MACOSX
#include <vector>
#include <algorithm>
#include "tunsafe_types.h"
#include "tunsafe_endian.h"
static const char kBase64Alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
char *base64_encode(const uint8 *input, size_t length, char *output, size_t output_size, size_t *out_length) {
char *result, *r;
const uint8 *end;
size_t size = (length + 2) / 3 * 4 + 1;
if (output != NULL) {
result = output;
assert(output_size >= size);
if (output_size < size) {
*result = 0;
return NULL;
}
} else {
result = (char*)malloc(size);
if (!result)
return NULL;
}
r = result;
end = input + length - 3;
// Encode full blocks
while (input <= end) {
uint32 a = (input[0] << 16) + (input[1] << 8) + input[2];
input += 3;
r[0] = kBase64Alphabet[(a >> 18)/* & 0x3F*/];
r[1] = kBase64Alphabet[(a >> 12) & 0x3F];
r[2] = kBase64Alphabet[(a >> 6) & 0x3F];
r[3] = kBase64Alphabet[(a) & 0x3F];
r += 4;
}
if (input == end + 2) {
uint32 a = input[0] << 4;
r[0] = kBase64Alphabet[(a >> 6) /*& 0x3F*/];
r[1] = kBase64Alphabet[(a) & 0x3F];
r[2] = '=';
r[3] = '=';
r += 4;
} else if (input == end + 1) {
uint32 a = (input[0] << 10) + (input[1] << 2);
r[0] = kBase64Alphabet[(a >> 12) /*& 0x3F*/];
r[1] = kBase64Alphabet[(a >> 6) & 0x3F];
r[2] = kBase64Alphabet[(a) & 0x3F];
r[3] = '=';
r += 4;
}
if (out_length)
*out_length = r - result;
*r = 0;
return result;
}
#define WHITESPACE 64
#define EQUALS 65
#define INVALID 66
static const unsigned char d[] = {
66,66,66,66,66,66,66,66,66,66,64,66,66,66,66,66,66,66,66,66,66,66,66,66,66,
66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,62,66,66,66,63,52,53,
54,55,56,57,58,59,60,61,66,66,66,65,66,66,66, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,66,66,66,66,66,66,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,66,66,
66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,
66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,
66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,
66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,
66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,66,
66,66,66,66,66,66
};
bool base64_decode(const uint8 *in, size_t inLen, uint8 *out, size_t *outLen) {
const uint8 *end = in + inLen;
uint8 iter = 0;
uint32_t buf = 0;
size_t len = 0;
while (in < end) {
unsigned char c = d[*in++];
switch (c) {
case WHITESPACE: continue; /* skip whitespace */
case INVALID: return false; /* invalid input, return error */
case EQUALS: /* pad character, end of data */
in = end;
continue;
default:
buf = buf << 6 | c;
iter++;
if (iter == 4) {
if ((len += 3) > *outLen) return 0; /* buffer overflow */
*(out++) = (buf >> 16) & 255;
*(out++) = (buf >> 8) & 255;
*(out++) = buf & 255;
buf = 0; iter = 0;
}
}
}
if (iter == 3) {
if ((len += 2) > *outLen) return 0; /* buffer overflow */
*(out++) = (buf >> 10) & 255;
*(out++) = (buf >> 2) & 255;
} else if (iter == 2) {
if (++len > *outLen) return 0; /* buffer overflow */
*(out++) = (buf >> 4) & 255;
}
*outLen = len;
return true;
}
int RunCommand(const char *fmt, ...) {
const char *fmt_org = fmt;
va_list va;
std::string tmp;
char buf[32], c;
char *args[33];
char *envp[1] = {NULL};
int nargs = 0;
bool didadd = false;
va_start(va, fmt);
for (;;) {
c = *fmt++;
if (c == '%') {
c = *fmt++;
if (c == 0) goto ZERO;
if (c == 's') {
char *arg = va_arg(va, char*);
if (arg != NULL) {
tmp += arg;
didadd = true;
}
} else if (c == 'd') {
snprintf(buf, 32, "%d", va_arg(va, int));
tmp += buf;
} else if (c == '%') {
tmp += '%';
}
} else if (c == ' ' || c == 0) {
ZERO:
if (!tmp.empty() || didadd) {
args[nargs++] = _strdup(tmp.c_str());
tmp.clear();
if (nargs == 32 || c == 0) break;
}
didadd = false;
} else {
tmp += c;
}
}
args[nargs] = 0;
fprintf(stderr, "Run:");
for (int i = 0; args[i]; i++)
fprintf(stderr, " %s", args[i]);
fprintf(stderr, "\n");
int ret = -1;
#if defined(OS_POSIX)
pid_t pid = fork();
if (pid == 0) {
execve(args[0], args, envp);
exit(127);
}
if (pid < 0) {
RERROR("Fork failed");
} else if (waitpid(pid, &ret, 0) != pid) {
ret = -1;
}
#endif
if (ret != 0)
RERROR("Command failed %d!", ret);
return ret;
}
bool IsOnlyZeros(const uint8 *data, size_t data_size) {
for (size_t i = 0; i != data_size; i++)
if (data[i])
return false;
return true;
}
#ifdef _MSC_VER
void printhex(const char *name, const void *a, size_t l) {
char buf[256];
snprintf(buf, 256, "%s (%d):", name, (int)l); OutputDebugString(buf);
for (size_t i = 0; i < l; i++) {
if (i % 4 == 0) printf(" ");
snprintf(buf, 256, "%.2X", *((uint8*)a + i)); OutputDebugString(buf);
}
OutputDebugString("\n");
}
#else
void printhex(const char *name, const void *a, size_t l) {
printf("%s (%d):", name, (int)l);
for (size_t i = 0; i < l; i++) {
if (i % 4 == 0) printf(" ");
printf("%.2X", *((uint8*)a + i));
}
printf("\n");
}
#endif
typedef void Logger(int type, const char *msg);
Logger *g_logger;
#undef RERROR
#undef void
void RERROR(const char *msg, ...);
void RERROR(const char *msg, ...) {
va_list va;
char buf[512];
va_start(va, msg);
vsnprintf(buf, sizeof(buf), msg, va);
va_end(va);
if (g_logger) {
g_logger(1, buf);
} else {
fputs(buf, stderr);
fputs("\n", stderr);
}
}
void RINFO(const char *msg, ...) {
va_list va;
char buf[512];
va_start(va, msg);
vsnprintf(buf, sizeof(buf), msg, va);
va_end(va);
if (g_logger) {
g_logger(0, buf);
} else {
fputs(buf, stderr);
fputs("\n", stderr);
}
}
void *memdup(const void *p, size_t size) {
void *x = malloc(size);
if (x)
memcpy(x, p, size);
return x;
}
char *my_strndup(const char *p, size_t size) {
char *x = (char*)malloc(size + 1);
if (x) {
x[size] = 0;
memcpy(x, p, size);
}
return x;
}
size_t my_strlcpy(char *dst, size_t dstsize, const char *src) {
size_t len = strlen(src);
if (dstsize) {
size_t lenx = std::min<size_t>(dstsize - 1, len);
dst[lenx] = 0;
memcpy(dst, src, lenx);
}
return len;
}
void OsGetRandomBytes(uint8 *data, size_t data_size) {
#if defined(OS_WIN)
static BOOLEAN(APIENTRY *pfn)(void*, ULONG);
if (!pfn) {
pfn = (BOOLEAN(APIENTRY *)(void*, ULONG))GetProcAddress(LoadLibrary("ADVAPI32.DLL"), "SystemFunction036");
if (!pfn)
ExitProcess(1);
}
if (!pfn(data, (ULONG)data_size)) {
ExitProcess(1);
return;
}
#elif defined(OS_POSIX)
int fd = open("/dev/urandom", O_RDONLY);
if (fd < 0) {
fprintf(stderr, "/dev/urandom failed\n");
exit(1);
}
int r = read(fd, data, data_size);
if (r != data_size) {
fprintf(stderr, "/dev/urandom failed\n");
exit(1);
}
close(fd);
#else
#error
#endif
}
bool ParseConfigKeyValue(char *m, std::vector<std::pair<char *, char*>> *result) {
for (;;) {
char *nl = strchr(m, '\n');
if (nl)
*nl = 0;
if (*m != '\0') {
char *value = strchr(m, '=');
if (value == NULL)
return false;
*value++ = '\0';
result->emplace_back(m, value);
}
if (!nl)
return true;
m = nl + 1;
}
}
bool ParseHexString(const char *text, void *data, size_t data_size) {
size_t len = strlen(text);
if (len != data_size * 2)
return false;
for (size_t i = 0; i < data_size; i++) {
uint32 c = text[i * 2 + 0];
if (c >= '0' && c <= '9') {
c -= '0';
} else if ((c |= 32) >= 'a' && c <= 'f') {
c -= 'a' - 10;
} else {
return false;
}
uint32 d = text[i * 2 + 1];
if (d >= '0' && d <= '9') {
d -= '0';
} else if ((d |= 32) >= 'a' && d <= 'f') {
d -= 'a' - 10;
} else {
return false;
}
((uint8*)data)[i] = c * 16 + d;
}
return true;
}
bool is_space(uint8_t c) {
return c == ' ' || c == '\r' || c == '\n' || c == '\t';
}
void SplitString(char *s, int separator, std::vector<char*> *components) {
components->clear();
for (;;) {
while (is_space(*s)) s++;
char *d = strchr(s, separator);
if (d == NULL) {
if (*s)
components->push_back(s);
return;
}
*d = 0;
char *e = d;
while (e > s && is_space(e[-1]))
*--e = 0;
components->push_back(s);
s = d + 1;
}
}
void PrintHexString(const void *data, size_t data_size, char *result) {
for (size_t i = 0; i < data_size; i++) {
uint8 c = ((uint8*)data)[i];
*result++ = "0123456789abcdef"[c >> 4];
*result++ = "0123456789abcdef"[c & 0xF];
}
*result++ = 0;
}
bool ParseBase64Key(const char *s, uint8 key[32]) {
size_t size = 32;
return base64_decode((uint8*)s, strlen(s), key, &size) && size == 32;
}
#if defined(OS_WIN)
uint64 OsGetMilliseconds() {
return GetTickCount64();
}
void OsGetTimestampTAI64N(uint8 dst[12]) {
SYSTEMTIME systime;
uint64 file_time_uint64 = 0;
GetSystemTime(&systime);
SystemTimeToFileTime(&systime, (FILETIME*)&file_time_uint64);
uint64 time_since_epoch_100ns = (file_time_uint64 - 116444736000000000);
uint64 secs_since_epoch = time_since_epoch_100ns / 10000000 + 0x400000000000000a;
uint32 nanos = (uint32)(time_since_epoch_100ns % 10000000) * 100;
WriteBE64(dst, secs_since_epoch);
WriteBE32(dst + 8, nanos);
}
void OsInterruptibleSleep(int millis) {
SleepEx(millis, TRUE);
}
#endif // defined(OS_WIN)
#if defined(OS_POSIX)
#if defined(OS_MACOSX)
static mach_timebase_info_data_t timebase = { 0, 0 };
static uint64_t initclock;
void InitOsxGetMilliseconds() {
if (mach_timebase_info(&timebase) != 0)
abort();
initclock = mach_absolute_time();
timebase.denom *= 1000000;
}
uint64 OsGetMilliseconds() {
assert(initclock != 0);
uint64_t clock = mach_absolute_time() - initclock;
return clock * (uint64_t)timebase.numer / (uint64_t)timebase.denom;
}
#else // defined(OS_MACOSX)
uint64 OsGetMilliseconds() {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
//error
fprintf(stderr, "clock_gettime failed\n");
exit(1);
}
return (uint64)ts.tv_sec * 1000 + (ts.tv_nsec / 1000000);
}
#endif
void OsGetTimestampTAI64N(uint8 dst[12]) {
struct timeval tv;
gettimeofday(&tv, NULL);
uint64 secs_since_epoch = tv.tv_sec + 0x400000000000000a;
uint32 nanos = tv.tv_usec * 1000;
WriteBE64(dst, secs_since_epoch);
WriteBE32(dst + 8, nanos);
}
void OsInterruptibleSleep(int millis) {
usleep((useconds_t)millis * 1000);
}
#endif // defined(OS_POSIX)