#ifdef _M_IX86 // use this file only for 32-bit architecture #define CRT_LOWORD(x) dword ptr [x+0] #define CRT_HIWORD(x) dword ptr [x+4] extern "C" { __declspec(naked) void _alldiv() { #define DVND esp + 16 // stack address of dividend (a) #define DVSR esp + 24 // stack address of divisor (b) __asm { push edi push esi push ebx ; Determine sign of the result (edi = 0 if result is positive, non-zero ; otherwise) and make operands positive. xor edi,edi ; result sign assumed positive mov eax,CRT_HIWORD(DVND) ; hi word of a or eax,eax ; test to see if signed jge short L1 ; skip rest if a is already positive inc edi ; complement result sign flag mov edx,CRT_LOWORD(DVND) ; lo word of a neg eax ; make a positive neg edx sbb eax,0 mov CRT_HIWORD(DVND),eax ; save positive value mov CRT_LOWORD(DVND),edx L1: mov eax,CRT_HIWORD(DVSR) ; hi word of b or eax,eax ; test to see if signed jge short L2 ; skip rest if b is already positive inc edi ; complement the result sign flag mov edx,CRT_LOWORD(DVSR) ; lo word of a neg eax ; make b positive neg edx sbb eax,0 mov CRT_HIWORD(DVSR),eax ; save positive value mov CRT_LOWORD(DVSR),edx L2: ; ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; ; NOTE - eax currently contains the high order word of DVSR ; or eax,eax ; check to see if divisor < 4194304K jnz short L3 ; nope, gotta do this the hard way mov ecx,CRT_LOWORD(DVSR) ; load divisor mov eax,CRT_HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; eax <- high order bits of quotient mov ebx,eax ; save high bits of quotient mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; eax <- low order bits of quotient mov edx,ebx ; edx:eax <- quotient jmp short L4 ; set sign, restore stack and return ; ; Here we do it the hard way. Remember, eax contains the high word of DVSR ; L3: mov ebx,eax ; ebx:ecx <- divisor mov ecx,CRT_LOWORD(DVSR) mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend mov eax,CRT_LOWORD(DVND) L5: shr ebx,1 ; shift divisor right one bit rcr ecx,1 shr edx,1 ; shift dividend right one bit rcr eax,1 or ebx,ebx jnz short L5 ; loop until divisor < 4194304K div ecx ; now divide, ignore remainder mov esi,eax ; save quotient ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR) mov ecx,eax mov eax,CRT_LOWORD(DVSR) mul esi ; QUOT * CRT_LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L6 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we are ok, otherwise ; subtract one (1) from the quotient. ; cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original ja short L6 ; if result > original, do subtract jb short L7 ; if result < original, we are ok cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words jbe short L7 ; if less or equal we are ok, else subtract L6: dec esi ; subtract 1 from quotient L7: xor edx,edx ; edx:eax <- quotient mov eax,esi ; ; Just the cleanup left to do. edx:eax contains the quotient. Set the sign ; according to the save value, cleanup the stack, and return. ; L4: dec edi ; check to see if result is negative jnz short L8 ; if EDI == 0, result should be negative neg edx ; otherwise, negate the result neg eax sbb edx,0 ; ; Restore the saved registers and return. ; L8: pop ebx pop esi pop edi ret 16 } #undef DVND #undef DVSR } __declspec(naked) void _alldvrm() { #define DVND esp + 16 // stack address of dividend (a) #define DVSR esp + 24 // stack address of divisor (b) __asm { push edi push esi push ebp ; Determine sign of the quotient (edi = 0 if result is positive, non-zero ; otherwise) and make operands positive. ; Sign of the remainder is kept in ebp. xor edi,edi ; result sign assumed positive xor ebp,ebp ; result sign assumed positive mov eax,CRT_HIWORD(DVND) ; hi word of a or eax,eax ; test to see if signed jge short L1 ; skip rest if a is already positive inc edi ; complement result sign flag inc ebp ; complement result sign flag mov edx,CRT_LOWORD(DVND) ; lo word of a neg eax ; make a positive neg edx sbb eax,0 mov CRT_HIWORD(DVND),eax ; save positive value mov CRT_LOWORD(DVND),edx L1: mov eax,CRT_HIWORD(DVSR) ; hi word of b or eax,eax ; test to see if signed jge short L2 ; skip rest if b is already positive inc edi ; complement the result sign flag mov edx,CRT_LOWORD(DVSR) ; lo word of a neg eax ; make b positive neg edx sbb eax,0 mov CRT_HIWORD(DVSR),eax ; save positive value mov CRT_LOWORD(DVSR),edx L2: ; ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; ; NOTE - eax currently contains the high order word of DVSR ; or eax,eax ; check to see if divisor < 4194304K jnz short L3 ; nope, gotta do this the hard way mov ecx,CRT_LOWORD(DVSR) ; load divisor mov eax,CRT_HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; eax <- high order bits of quotient mov ebx,eax ; save high bits of quotient mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; eax <- low order bits of quotient mov esi,eax ; ebx:esi <- quotient ; ; Now we need to do a multiply so that we can compute the remainder. ; mov eax,ebx ; set up high word of quotient mul CRT_LOWORD(DVSR) ; CRT_HIWORD(QUOT) * DVSR mov ecx,eax ; save the result in ecx mov eax,esi ; set up low word of quotient mul CRT_LOWORD(DVSR) ; CRT_LOWORD(QUOT) * DVSR add edx,ecx ; EDX:EAX = QUOT * DVSR jmp short L4 ; complete remainder calculation ; ; Here we do it the hard way. Remember, eax contains the high word of DVSR ; L3: mov ebx,eax ; ebx:ecx <- divisor mov ecx,CRT_LOWORD(DVSR) mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend mov eax,CRT_LOWORD(DVND) L5: shr ebx,1 ; shift divisor right one bit rcr ecx,1 shr edx,1 ; shift dividend right one bit rcr eax,1 or ebx,ebx jnz short L5 ; loop until divisor < 4194304K div ecx ; now divide, ignore remainder mov esi,eax ; save quotient ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR) mov ecx,eax mov eax,CRT_LOWORD(DVSR) mul esi ; QUOT * CRT_LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L6 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we are ok, otherwise ; subtract one (1) from the quotient. ; cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original ja short L6 ; if result > original, do subtract jb short L7 ; if result < original, we are ok cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words jbe short L7 ; if less or equal we are ok, else subtract L6: dec esi ; subtract 1 from quotient sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result sbb edx,CRT_HIWORD(DVSR) L7: xor ebx,ebx ; ebx:esi <- quotient L4: ; ; Calculate remainder by subtracting the result from the original dividend. ; Since the result is already in a register, we will do the subtract in the ; opposite direction and negate the result if necessary. ; sub eax,CRT_LOWORD(DVND) ; subtract dividend from result sbb edx,CRT_HIWORD(DVND) ; ; Now check the result sign flag to see if the result is supposed to be positive ; or negative. It is currently negated (because we subtracted in the 'wrong' ; direction), so if the sign flag is set we are done, otherwise we must negate ; the result to make it positive again. ; dec ebp ; check result sign flag jns short L9 ; result is ok, set up the quotient neg edx ; otherwise, negate the result neg eax sbb edx,0 ; ; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx. ; L9: mov ecx,edx mov edx,ebx mov ebx,ecx mov ecx,eax mov eax,esi ; ; Just the cleanup left to do. edx:eax contains the quotient. Set the sign ; according to the save value, cleanup the stack, and return. ; dec edi ; check to see if result is negative jnz short L8 ; if EDI == 0, result should be negative neg edx ; otherwise, negate the result neg eax sbb edx,0 ; ; Restore the saved registers and return. ; L8: pop ebp pop esi pop edi ret 16 } #undef DVND #undef DVSR } __declspec(naked) void _allmul() { #define A esp + 8 // stack address of a #define B esp + 16 // stack address of b __asm { push ebx mov eax,CRT_HIWORD(A) mov ecx,CRT_LOWORD(B) mul ecx ;eax has AHI, ecx has BLO, so AHI * BLO mov ebx,eax ;save result mov eax,CRT_LOWORD(A) mul CRT_HIWORD(B) ;ALO * BHI add ebx,eax ;ebx = ((ALO * BHI) + (AHI * BLO)) mov eax,CRT_LOWORD(A) ;ecx = BLO mul ecx ;so edx:eax = ALO*BLO add edx,ebx ;now edx has all the LO*HI stuff pop ebx ret 16 ; callee restores the stack } #undef A #undef B } __declspec(naked) void _allrem() { #define DVND esp + 12 // stack address of dividend (a) #define DVSR esp + 20 // stack address of divisor (b) __asm { push ebx push edi ; Determine sign of the result (edi = 0 if result is positive, non-zero ; otherwise) and make operands positive. xor edi,edi ; result sign assumed positive mov eax,CRT_HIWORD(DVND) ; hi word of a or eax,eax ; test to see if signed jge short L1 ; skip rest if a is already positive inc edi ; complement result sign flag bit mov edx,CRT_LOWORD(DVND) ; lo word of a neg eax ; make a positive neg edx sbb eax,0 mov CRT_HIWORD(DVND),eax ; save positive value mov CRT_LOWORD(DVND),edx L1: mov eax,CRT_HIWORD(DVSR) ; hi word of b or eax,eax ; test to see if signed jge short L2 ; skip rest if b is already positive mov edx,CRT_LOWORD(DVSR) ; lo word of b neg eax ; make b positive neg edx sbb eax,0 mov CRT_HIWORD(DVSR),eax ; save positive value mov CRT_LOWORD(DVSR),edx L2: ; ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; ; NOTE - eax currently contains the high order word of DVSR ; or eax,eax ; check to see if divisor < 4194304K jnz short L3 ; nope, gotta do this the hard way mov ecx,CRT_LOWORD(DVSR) ; load divisor mov eax,CRT_HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; edx <- remainder mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; edx <- final remainder mov eax,edx ; edx:eax <- remainder xor edx,edx dec edi ; check result sign flag jns short L4 ; negate result, restore stack and return jmp short L8 ; result sign ok, restore stack and return ; ; Here we do it the hard way. Remember, eax contains the high word of DVSR ; L3: mov ebx,eax ; ebx:ecx <- divisor mov ecx,CRT_LOWORD(DVSR) mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend mov eax,CRT_LOWORD(DVND) L5: shr ebx,1 ; shift divisor right one bit rcr ecx,1 shr edx,1 ; shift dividend right one bit rcr eax,1 or ebx,ebx jnz short L5 ; loop until divisor < 4194304K div ecx ; now divide, ignore remainder ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mov ecx,eax ; save a copy of quotient in ECX mul CRT_HIWORD(DVSR) xchg ecx,eax ; save product, get quotient in EAX mul CRT_LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L6 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we are ok, otherwise ; subtract the original divisor from the result. ; cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original ja short L6 ; if result > original, do subtract jb short L7 ; if result < original, we are ok cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words jbe short L7 ; if less or equal we are ok, else subtract L6: sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result sbb edx,CRT_HIWORD(DVSR) L7: ; ; Calculate remainder by subtracting the result from the original dividend. ; Since the result is already in a register, we will do the subtract in the ; opposite direction and negate the result if necessary. ; sub eax,CRT_LOWORD(DVND) ; subtract dividend from result sbb edx,CRT_HIWORD(DVND) ; ; Now check the result sign flag to see if the result is supposed to be positive ; or negative. It is currently negated (because we subtracted in the 'wrong' ; direction), so if the sign flag is set we are done, otherwise we must negate ; the result to make it positive again. ; dec edi ; check result sign flag jns short L8 ; result is ok, restore stack and return L4: neg edx ; otherwise, negate the result neg eax sbb edx,0 ; ; Just the cleanup left to do. edx:eax contains the quotient. ; Restore the saved registers and return. ; L8: pop edi pop ebx ret 16 } #undef DVND #undef DVSR } __declspec(naked) void _allshl() { __asm { ; ; Handle shifts of 64 or more bits (all get 0) ; cmp cl, 64 jae short RETZERO ; ; Handle shifts of between 0 and 31 bits ; cmp cl, 32 jae short MORE32 shld edx,eax,cl shl eax,cl ret ; ; Handle shifts of between 32 and 63 bits ; MORE32: mov edx,eax xor eax,eax and cl,31 shl edx,cl ret ; ; return 0 in edx:eax ; RETZERO: xor eax,eax xor edx,edx ret } } __declspec(naked) void _allshr() { __asm { ; ; Handle shifts of 64 bits or more (if shifting 64 bits or more, the result ; depends only on the high order bit of edx). ; cmp cl,64 jae short RETSIGN ; ; Handle shifts of between 0 and 31 bits ; cmp cl, 32 jae short MORE32 shrd eax,edx,cl sar edx,cl ret ; ; Handle shifts of between 32 and 63 bits ; MORE32: mov eax,edx sar edx,31 and cl,31 sar eax,cl ret ; ; Return double precision 0 or -1, depending on the sign of edx ; RETSIGN: sar edx,31 mov eax,edx ret } } __declspec(naked) void _aulldiv() { #define DVND esp + 12 // stack address of dividend (a) #define DVSR esp + 20 // stack address of divisor (b) __asm { push ebx push esi ; ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; mov eax,CRT_HIWORD(DVSR) ; check to see if divisor < 4194304K or eax,eax jnz short L1 ; nope, gotta do this the hard way mov ecx,CRT_LOWORD(DVSR) ; load divisor mov eax,CRT_HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; get high order bits of quotient mov ebx,eax ; save high bits of quotient mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; get low order bits of quotient mov edx,ebx ; edx:eax <- quotient hi:quotient lo jmp short L2 ; restore stack and return ; ; Here we do it the hard way. Remember, eax contains DVSRHI ; L1: mov ecx,eax ; ecx:ebx <- divisor mov ebx,CRT_LOWORD(DVSR) mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend mov eax,CRT_LOWORD(DVND) L3: shr ecx,1 ; shift divisor right one bit; hi bit <- 0 rcr ebx,1 shr edx,1 ; shift dividend right one bit; hi bit <- 0 rcr eax,1 or ecx,ecx jnz short L3 ; loop until divisor < 4194304K div ebx ; now divide, ignore remainder mov esi,eax ; save quotient ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR) mov ecx,eax mov eax,CRT_LOWORD(DVSR) mul esi ; QUOT * CRT_LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L4 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we are ok, otherwise ; subtract one (1) from the quotient. ; cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original ja short L4 ; if result > original, do subtract jb short L5 ; if result < original, we are ok cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words jbe short L5 ; if less or equal we are ok, else subtract L4: dec esi ; subtract 1 from quotient L5: xor edx,edx ; edx:eax <- quotient mov eax,esi ; ; Just the cleanup left to do. edx:eax contains the quotient. ; Restore the saved registers and return. ; L2: pop esi pop ebx ret 16 } #undef DVND #undef DVSR } __declspec(naked) void _aulldvrm() { #define DVND esp + 8 // stack address of dividend (a) #define DVSR esp + 16 // stack address of divisor (b) __asm { push esi ; ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; mov eax,CRT_HIWORD(DVSR) ; check to see if divisor < 4194304K or eax,eax jnz short L1 ; nope, gotta do this the hard way mov ecx,CRT_LOWORD(DVSR) ; load divisor mov eax,CRT_HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; get high order bits of quotient mov ebx,eax ; save high bits of quotient mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; get low order bits of quotient mov esi,eax ; ebx:esi <- quotient ; ; Now we need to do a multiply so that we can compute the remainder. ; mov eax,ebx ; set up high word of quotient mul CRT_LOWORD(DVSR) ; CRT_HIWORD(QUOT) * DVSR mov ecx,eax ; save the result in ecx mov eax,esi ; set up low word of quotient mul CRT_LOWORD(DVSR) ; CRT_LOWORD(QUOT) * DVSR add edx,ecx ; EDX:EAX = QUOT * DVSR jmp short L2 ; complete remainder calculation ; ; Here we do it the hard way. Remember, eax contains DVSRHI ; L1: mov ecx,eax ; ecx:ebx <- divisor mov ebx,CRT_LOWORD(DVSR) mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend mov eax,CRT_LOWORD(DVND) L3: shr ecx,1 ; shift divisor right one bit; hi bit <- 0 rcr ebx,1 shr edx,1 ; shift dividend right one bit; hi bit <- 0 rcr eax,1 or ecx,ecx jnz short L3 ; loop until divisor < 4194304K div ebx ; now divide, ignore remainder mov esi,eax ; save quotient ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mul CRT_HIWORD(DVSR) ; QUOT * CRT_HIWORD(DVSR) mov ecx,eax mov eax,CRT_LOWORD(DVSR) mul esi ; QUOT * CRT_LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L4 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we are ok, otherwise ; subtract one (1) from the quotient. ; cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original ja short L4 ; if result > original, do subtract jb short L5 ; if result < original, we are ok cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words jbe short L5 ; if less or equal we are ok, else subtract L4: dec esi ; subtract 1 from quotient sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result sbb edx,CRT_HIWORD(DVSR) L5: xor ebx,ebx ; ebx:esi <- quotient L2: ; ; Calculate remainder by subtracting the result from the original dividend. ; Since the result is already in a register, we will do the subtract in the ; opposite direction and negate the result. ; sub eax,CRT_LOWORD(DVND) ; subtract dividend from result sbb edx,CRT_HIWORD(DVND) neg edx ; otherwise, negate the result neg eax sbb edx,0 ; ; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx. ; mov ecx,edx mov edx,ebx mov ebx,ecx mov ecx,eax mov eax,esi ; ; Just the cleanup left to do. edx:eax contains the quotient. ; Restore the saved registers and return. ; pop esi ret 16 } #undef DVND #undef DVSR } __declspec(naked) void _aullrem() { #define DVND esp + 8 // stack address of dividend (a) #define DVSR esp + 16 // stack address of divisor (b) __asm { push ebx ; Now do the divide. First look to see if the divisor is less than 4194304K. ; If so, then we can use a simple algorithm with word divides, otherwise ; things get a little more complex. ; mov eax,CRT_HIWORD(DVSR) ; check to see if divisor < 4194304K or eax,eax jnz short L1 ; nope, gotta do this the hard way mov ecx,CRT_LOWORD(DVSR) ; load divisor mov eax,CRT_HIWORD(DVND) ; load high word of dividend xor edx,edx div ecx ; edx <- remainder, eax <- quotient mov eax,CRT_LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend div ecx ; edx <- final remainder mov eax,edx ; edx:eax <- remainder xor edx,edx jmp short L2 ; restore stack and return ; ; Here we do it the hard way. Remember, eax contains DVSRHI ; L1: mov ecx,eax ; ecx:ebx <- divisor mov ebx,CRT_LOWORD(DVSR) mov edx,CRT_HIWORD(DVND) ; edx:eax <- dividend mov eax,CRT_LOWORD(DVND) L3: shr ecx,1 ; shift divisor right one bit; hi bit <- 0 rcr ebx,1 shr edx,1 ; shift dividend right one bit; hi bit <- 0 rcr eax,1 or ecx,ecx jnz short L3 ; loop until divisor < 4194304K div ebx ; now divide, ignore remainder ; ; We may be off by one, so to check, we will multiply the quotient ; by the divisor and check the result against the orignal dividend ; Note that we must also check for overflow, which can occur if the ; dividend is close to 2**64 and the quotient is off by 1. ; mov ecx,eax ; save a copy of quotient in ECX mul CRT_HIWORD(DVSR) xchg ecx,eax ; put partial product in ECX, get quotient in EAX mul CRT_LOWORD(DVSR) add edx,ecx ; EDX:EAX = QUOT * DVSR jc short L4 ; carry means Quotient is off by 1 ; ; do long compare here between original dividend and the result of the ; multiply in edx:eax. If original is larger or equal, we're ok, otherwise ; subtract the original divisor from the result. ; cmp edx,CRT_HIWORD(DVND) ; compare hi words of result and original ja short L4 ; if result > original, do subtract jb short L5 ; if result < original, we're ok cmp eax,CRT_LOWORD(DVND) ; hi words are equal, compare lo words jbe short L5 ; if less or equal we're ok, else subtract L4: sub eax,CRT_LOWORD(DVSR) ; subtract divisor from result sbb edx,CRT_HIWORD(DVSR) L5: ; ; Calculate remainder by subtracting the result from the original dividend. ; Since the result is already in a register, we will perform the subtract in ; the opposite direction and negate the result to make it positive. ; sub eax,CRT_LOWORD(DVND) ; subtract original dividend from result sbb edx,CRT_HIWORD(DVND) neg edx ; and negate it neg eax sbb edx,0 ; ; Just the cleanup left to do. dx:ax contains the remainder. ; Restore the saved registers and return. ; L2: pop ebx ret 16 } #undef DVND #undef DVSR } __declspec(naked) void _aullshr() { __asm { cmp cl,64 jae short RETZERO ; ; Handle shifts of between 0 and 31 bits ; cmp cl, 32 jae short MORE32 shrd eax,edx,cl shr edx,cl ret ; ; Handle shifts of between 32 and 63 bits ; MORE32: mov eax,edx xor edx,edx and cl,31 shr eax,cl ret ; ; return 0 in edx:eax ; RETZERO: xor eax,eax xor edx,edx ret } } } #undef CRT_LOWORD #undef CRT_HIWORD #endif