// SPDX-License-Identifier: AGPL-1.0-only // Copyright (C) 2018 Ludvig Strigeus . All Rights Reserved. #include "netapi.h" #include "wireguard.h" #include "wireguard_config.h" #include "tunsafe_endian.h" #include "tunsafe_config.h" #include "util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(OS_MACOSX) #include #include #include #include #include #include #elif defined(OS_FREEBSD) #include #include #elif defined(OS_LINUX) #include #include #include #endif static Packet *freelist; void SetThreadName(const char *name) { #if defined(OS_LINUX) prctl(PR_SET_NAME, name, 0, 0, 0); #endif // defined(OS_LINUX) } void FreePacket(Packet *packet) { free(packet); // packet->next = freelist; // freelist = packet; } Packet *AllocPacket() { Packet *p = NULL;// freelist; if (p) { freelist = p->next; } else { p = (Packet*)malloc(kPacketAllocSize); if (p == NULL) { RERROR("Allocation failure"); abort(); } } p->data = p->data_buf + Packet::HEADROOM_BEFORE; p->size = 0; return p; } void FreePackets() { Packet *p; while ( (p = freelist ) != NULL) { freelist = p->next; free(p); } } #if defined(OS_MACOSX) || defined(OS_FREEBSD) struct MyRouteMsg { struct rt_msghdr hdr; uint32 pad; struct sockaddr_in target; struct sockaddr_in netmask; }; struct MyRouteReply { struct rt_msghdr hdr; uint8 buf[512]; }; // Zero gets rounded up #if defined(OS_MACOSX) #define RTMSG_ROUNDUP(a) ((a) ? ((((a) - 1) | (sizeof(uint32_t) - 1)) + 1) : sizeof(uint32_t)) #else #define RTMSG_ROUNDUP(a) ((a) ? ((((a) - 1) | (sizeof(long) - 1)) + 1) : sizeof(long)) #endif static bool GetDefaultRoute(char *iface, size_t iface_size, uint32 *gw_addr) { int fd, pid, len; union { MyRouteMsg rt; MyRouteReply rep; }; fd = socket(PF_ROUTE, SOCK_RAW, AF_INET); if (fd < 0) return false; memset(&rt, 0, sizeof(rt)); rt.hdr.rtm_type = RTM_GET; rt.hdr.rtm_flags = RTF_UP | RTF_GATEWAY; rt.hdr.rtm_version = RTM_VERSION; rt.hdr.rtm_seq = 0; rt.hdr.rtm_addrs = RTA_DST | RTA_NETMASK | RTA_IFP; rt.target.sin_family = AF_INET; rt.netmask.sin_family = AF_INET; rt.target.sin_len = sizeof(struct sockaddr_in); rt.netmask.sin_len = sizeof(struct sockaddr_in); rt.hdr.rtm_msglen = sizeof(rt); if (write(fd, (char*)&rt, sizeof(rt)) != sizeof(rt)) { RERROR("PF_ROUTE write failed."); close(fd); return false; } pid = getpid(); do { len = read(fd, (char *)&rep, sizeof(rep)); if (len <= 0) { RERROR("PF_ROUTE read failed."); close(fd); return false; } } while (rep.hdr.rtm_seq != 0 || rep.hdr.rtm_pid != pid); close(fd); const struct sockaddr_dl *ifp = NULL; const struct sockaddr_in *gw = NULL; uint8 *pos = rep.buf; for (int i = 1; i && i < rep.hdr.rtm_addrs; i <<= 1) { if (rep.hdr.rtm_addrs & i) { if (1 > rep.buf + 512 - pos) break; // invalid size_t len = RTMSG_ROUNDUP(((struct sockaddr*)pos)->sa_len); if (len > rep.buf + 512 - pos) break; // invalid // RINFO("rtm %d %d", i, ((struct sockaddr*)pos)->sa_len); if (i == RTA_IFP && ((struct sockaddr*)pos)->sa_len == sizeof(struct sockaddr_dl)) { ifp = (struct sockaddr_dl *)pos; } else if (i == RTA_GATEWAY && ((struct sockaddr*)pos)->sa_len == sizeof(struct sockaddr_in)) { gw = (struct sockaddr_in *)pos; } pos += len; } } if (ifp && ifp->sdl_nlen && ifp->sdl_nlen < iface_size) { iface[ifp->sdl_nlen] = 0; memcpy(iface, ifp->sdl_data, ifp->sdl_nlen); if (gw && gw->sin_family == AF_INET) { *gw_addr = ReadBE32(&gw->sin_addr); return true; } } // RINFO("Read %d %d %d", len, rep.hdr.rtm_addrs, (int)sizeof(struct rt_msghdr )); return false; } #endif // defined(OS_MACOSX) || defined(OS_FREEBSD) #if defined(OS_LINUX) static bool GetDefaultRoute(char *iface, size_t iface_size, uint32 *gw_addr) { return false; } #endif // defined(OS_LINUX) #if defined(OS_MACOSX) static mach_timebase_info_data_t timebase = { 0, 0 }; static uint64_t initclock; void InitOsxGetMilliseconds() { if (mach_timebase_info(&timebase) != 0) abort(); initclock = mach_absolute_time(); timebase.denom *= 1000000; } uint64 OsGetMilliseconds() { uint64_t clock = mach_absolute_time() - initclock; return clock * (uint64_t)timebase.numer / (uint64_t)timebase.denom; } #else // defined(OS_MACOSX) uint64 OsGetMilliseconds() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) { //error fprintf(stderr, "clock_gettime failed\n"); exit(1); } return (uint64)ts.tv_sec * 1000 + (ts.tv_nsec / 1000000); } #endif void OsGetTimestampTAI64N(uint8 dst[12]) { struct timeval tv; gettimeofday(&tv, NULL); uint64 secs_since_epoch = tv.tv_sec + 0x400000000000000a; uint32 nanos = tv.tv_usec * 1000; WriteBE64(dst, secs_since_epoch); WriteBE32(dst + 8, nanos); } void OsGetRandomBytes(uint8 *data, size_t data_size) { int fd = open("/dev/urandom", O_RDONLY); int r = read(fd, data, data_size); if (r < 0) r = 0; close(fd); for (; r < data_size; r++) data[r] = rand() >> 6; } void OsInterruptibleSleep(int millis) { usleep((useconds_t)millis * 1000); } #if defined(OS_MACOSX) #define TUN_PREFIX_BYTES 4 int open_tun(char *devname, size_t devname_size) { struct sockaddr_ctl sc; struct ctl_info ctlinfo = {0}; int fd; memcpy(ctlinfo.ctl_name, UTUN_CONTROL_NAME, sizeof(UTUN_CONTROL_NAME)); for(int i = 0; i < 256; i++) { fd = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL); if (fd < 0) { RERROR("socket(SYSPROTO_CONTROL) failed"); return -1; } if (ioctl(fd, CTLIOCGINFO, &ctlinfo) == -1) { RERROR("ioctl(CTLIOCGINFO) failed: %d", errno); close(fd); return -1; } sc.sc_id = ctlinfo.ctl_id; sc.sc_len = sizeof(sc); sc.sc_family = AF_SYSTEM; sc.ss_sysaddr = AF_SYS_CONTROL; sc.sc_unit = i + 1; if (connect(fd, (struct sockaddr *)&sc, sizeof(sc)) == 0) { socklen_t devname_size2 = devname_size; if (getsockopt(fd, SYSPROTO_CONTROL, UTUN_OPT_IFNAME, devname, &devname_size2)) { RERROR("getsockopt(UTUN_OPT_IFNAME) failed"); close(fd); return -1; } return fd; } close(fd); } return -1; } #elif defined(OS_FREEBSD) #define TUN_PREFIX_BYTES 4 int open_tun(char *devname, size_t devname_size) { char buf[32]; int tun_fd; // First open an existing tun device for(int i = 0; i < 256; i++) { sprintf(buf, "/dev/tun%d", i); tun_fd = open(buf, O_RDWR); if (tun_fd >= 0) goto did_open; } tun_fd = open("/dev/tun", O_RDWR); if (tun_fd < 0) return tun_fd; did_open: if (!fdevname_r(tun_fd, devname, devname_size)) { RERROR("Unable to get name of tun device"); close(tun_fd); return -1; } int flags = IFF_POINTOPOINT | IFF_MULTICAST; if (ioctl(tun_fd, TUNSIFMODE, &flags) < 0) { RERROR("ioctl(TUNSIFMODE) failed"); close(tun_fd); return -1; } flags = 1; if (ioctl(tun_fd, TUNSIFHEAD, &flags) < 0) { RERROR("ioctl(TUNSIFHEAD) failed"); close(tun_fd); return -1; } return tun_fd; } #elif defined(OS_LINUX) #define TUN_PREFIX_BYTES 0 int open_tun(char *devname, size_t devname_size) { int fd, err; struct ifreq ifr; fd = open("/dev/net/tun", O_RDWR); if (fd < 0) return fd; memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = IFF_TUN | IFF_NO_PI; if ((err = ioctl(fd, TUNSETIFF, (void *) &ifr)) < 0) { close(fd); return err; } strcpy(devname, ifr.ifr_name); return fd; } #endif int open_udp(int listen_on_port) { int udp_fd = socket(AF_INET, SOCK_DGRAM, 0); if (udp_fd < 0) return udp_fd; sockaddr_in sin = {0}; sin.sin_family = AF_INET; sin.sin_port = htons(listen_on_port); if (bind(udp_fd, (struct sockaddr*)&sin, sizeof(sin)) != 0) { close(udp_fd); return -1; } return udp_fd; } class WorkerLoop { public: WorkerLoop(); ~WorkerLoop(); bool Initialize(WireguardProcessor *processor); void *ThreadMain(); void StartThread(); void StopThread(); void NotifyStop(); enum { TARGET_UDP, TARGET_TUN }; void HandleUdpPacket(Packet *packet) { HandlePacket(packet, TARGET_UDP); } void HandleTunPacket(Packet *packet) { HandlePacket(packet, TARGET_TUN); } void HandleSigAlrm() { got_sig_alarm_ = true; } private: static void *ThreadMainStatic(void *x); void HandlePacket(Packet *packet, int target); WireguardProcessor *processor_; pthread_t tid_; Packet *queue_, **queue_end_; bool shutting_down_; bool got_sig_alarm_; pthread_mutex_t lock_; pthread_cond_t cond_; }; // Handles the threads that read/write to the udp socket. class UdpLoop { public: UdpLoop(); ~UdpLoop(); bool Initialize(int listen_port, WorkerLoop *worker); void Start(); void Stop(); void WriteUdpPacket(Packet *packet); private: static void *ReaderMainStatic(void *x); static void *WriterMainStatic(void *x); void *ReaderMain(); void *WriterMain(); int fd_; WorkerLoop *worker_; pthread_t read_tid_, write_tid_; Packet *queue_, **queue_end_; bool shutting_down_; pthread_mutex_t lock_; pthread_cond_t cond_; }; // Handles the threads that read/write to the tun socket. class TunLoop { public: TunLoop(); ~TunLoop(); bool Initialize(WorkerLoop *worker); void Start(); void Stop(); void WriteTunPacket(Packet *packet); char *devname() { return devname_; } private: static void *ReaderMainStatic(void *x); static void *WriterMainStatic(void *x); void *ReaderMain(); void *WriterMain(); int fd_; bool shutting_down_; char devname_[16]; WorkerLoop *worker_; pthread_t read_tid_, write_tid_; Packet *queue_, **queue_end_; pthread_mutex_t lock_; pthread_cond_t cond_; }; WorkerLoop::WorkerLoop() { queue_end_ = &queue_; queue_ = NULL; tid_ = 0; shutting_down_ = false; got_sig_alarm_ = false; processor_ = NULL; pthread_mutex_init(&lock_, NULL); pthread_cond_init(&cond_, NULL); } WorkerLoop::~WorkerLoop() { pthread_mutex_destroy(&lock_); pthread_cond_destroy(&cond_); } bool WorkerLoop::Initialize(WireguardProcessor *processor) { processor_ = processor; return true; } void WorkerLoop::StartThread() { assert(tid_ == 0); pthread_create(&tid_, NULL, &ThreadMainStatic, this); } void WorkerLoop::StopThread() { pthread_mutex_lock(&lock_); shutting_down_ = true; pthread_mutex_unlock(&lock_); if (tid_) { void *x; pthread_join(tid_, &x); tid_ = 0; } } // This is called from signal handler so cannot block etc. void WorkerLoop::NotifyStop() { shutting_down_ = true; } void WorkerLoop::HandlePacket(Packet *packet, int target) { // RINFO("WorkerLoop::HandlePacket"); packet->post_target = target; pthread_mutex_lock(&lock_); Packet *old_queue = queue_; *queue_end_ = packet; queue_end_ = &packet->next; packet->next = NULL; if (old_queue == NULL) { pthread_mutex_unlock(&lock_); pthread_cond_signal(&cond_); } else { pthread_mutex_unlock(&lock_); } } void *WorkerLoop::ThreadMainStatic(void *x) { return ((WorkerLoop*)x)->ThreadMain(); } void *WorkerLoop::ThreadMain() { Packet *packet_queue; pthread_mutex_lock(&lock_); for (;;) { // Grab the whole list for (;;) { while (got_sig_alarm_) { got_sig_alarm_ = false; pthread_mutex_unlock(&lock_); processor_->SecondLoop(); pthread_mutex_lock(&lock_); } if (shutting_down_ || queue_ != NULL) break; pthread_cond_wait(&cond_, &lock_); } if (shutting_down_) break; packet_queue = queue_; queue_ = NULL; queue_end_ = &queue_; pthread_mutex_unlock(&lock_); // And send all items in the list while (packet_queue != NULL) { Packet *next = packet_queue->next; if (packet_queue->post_target == TARGET_TUN) { processor_->HandleTunPacket(packet_queue); } else { processor_->HandleUdpPacket(packet_queue, false); } packet_queue = next; } pthread_mutex_lock(&lock_); } pthread_mutex_unlock(&lock_); return NULL; } UdpLoop::UdpLoop() { fd_ = -1; read_tid_ = 0; write_tid_ = 0; shutting_down_ = false; worker_ = NULL; queue_ = NULL; queue_end_ = &queue_; pthread_mutex_init(&lock_, NULL); pthread_cond_init(&cond_, NULL); } UdpLoop::~UdpLoop() { if (fd_ != -1) close(fd_); pthread_mutex_destroy(&lock_); pthread_cond_destroy(&cond_); } bool UdpLoop::Initialize(int listen_port, WorkerLoop *worker) { int fd = open_udp(listen_port); if (fd < 0) { RERROR("Error opening udp"); return false; } fcntl(fd, F_SETFD, FD_CLOEXEC); fd_ = fd; worker_ = worker; return true; } void UdpLoop::Start() { pthread_create(&read_tid_, NULL, &ReaderMainStatic, this); pthread_create(&write_tid_, NULL, &WriterMainStatic, this); } void UdpLoop::Stop() { void *x; pthread_mutex_lock(&lock_); shutting_down_ = true; pthread_mutex_unlock(&lock_); pthread_cond_signal(&cond_); pthread_kill(read_tid_, SIGUSR1); pthread_kill(write_tid_, SIGUSR1); pthread_join(read_tid_, &x); pthread_join(write_tid_, &x); read_tid_ = 0; write_tid_ = 0; } void *UdpLoop::ReaderMainStatic(void *x) { SetThreadName("tunsafe-ur"); return ((UdpLoop*)x)->ReaderMain(); } void *UdpLoop::WriterMainStatic(void *x) { SetThreadName("tunsafe-uw"); return ((UdpLoop*)x)->WriterMain(); } void *UdpLoop::ReaderMain() { Packet *packet; socklen_t sin_len; int r; while (!shutting_down_) { packet = AllocPacket(); sin_len = sizeof(packet->addr.sin); r = recvfrom(fd_, packet->data, kPacketCapacity, 0, (sockaddr*)&packet->addr.sin, &sin_len); if (r < 0) { FreePacket(packet); if (shutting_down_) break; RERROR("ReadMain failed %d", errno); } else { packet->size = r; worker_->HandleUdpPacket(packet); } } return NULL; } void *UdpLoop::WriterMain() { Packet *queue; pthread_mutex_lock(&lock_); for (;;) { // Grab the whole list while (!shutting_down_ && queue_ == NULL) pthread_cond_wait(&cond_, &lock_); if (shutting_down_) break; queue = queue_; queue_ = NULL; queue_end_ = &queue_; pthread_mutex_unlock(&lock_); // And send all items in the list while (queue != NULL) { int r = sendto(fd_, queue->data, queue->size, 0, (sockaddr*)&queue->addr.sin, sizeof(queue->addr.sin)); if (r != queue->size) { if (errno != ENOBUFS) RERROR("WriterMain failed: %d", errno); } else { // RINFO("WRote udp packet!"); } Packet *to_free = queue; queue = queue->next; FreePacket(to_free); } pthread_mutex_lock(&lock_); } pthread_mutex_unlock(&lock_); return NULL; } void UdpLoop::WriteUdpPacket(Packet *packet) { // RINFO("write udp packet to queue!"); packet->next = NULL; pthread_mutex_lock(&lock_); Packet *old_queue = queue_; *queue_end_ = packet; queue_end_ = &packet->next; if (old_queue == NULL) { pthread_mutex_unlock(&lock_); pthread_cond_signal(&cond_); } else { pthread_mutex_unlock(&lock_); } } TunLoop::TunLoop() { fd_ = -1; shutting_down_ = false; worker_ = NULL; read_tid_ = 0; write_tid_ = 0; queue_ = NULL; queue_end_ = &queue_; pthread_mutex_init(&lock_, NULL); pthread_cond_init(&cond_, NULL); } TunLoop::~TunLoop() { if (fd_ != -1) close(fd_); pthread_mutex_destroy(&lock_); pthread_cond_destroy(&cond_); } bool TunLoop::Initialize(WorkerLoop *worker) { int fd = open_tun(devname_, sizeof(devname_)); if (fd < 0) { RERROR("Error opening tun"); return false; } fcntl(fd, F_SETFD, FD_CLOEXEC); fd_ = fd; worker_ = worker; return true; } void TunLoop::Start() { pthread_create(&read_tid_, NULL, &ReaderMainStatic, this); pthread_create(&write_tid_, NULL, &WriterMainStatic, this); } void TunLoop::Stop() { void *x; pthread_mutex_lock(&lock_); shutting_down_ = true; pthread_mutex_unlock(&lock_); pthread_kill(read_tid_, SIGUSR1); pthread_kill(write_tid_, SIGUSR1); pthread_join(read_tid_, &x); pthread_join(write_tid_, &x); read_tid_ = 0; write_tid_ = 0; } void *TunLoop::ReaderMainStatic(void *x) { SetThreadName("tunsafe-tr"); return ((TunLoop*)x)->ReaderMain(); } void *TunLoop::WriterMainStatic(void *x) { SetThreadName("tunsafe-tw"); return ((TunLoop*)x)->WriterMain(); } void *TunLoop::ReaderMain() { Packet *packet = AllocPacket(); while (!shutting_down_) { int r = read(fd_, packet->data - TUN_PREFIX_BYTES, kPacketCapacity + TUN_PREFIX_BYTES); if (r >= 0) { packet->size = r - TUN_PREFIX_BYTES; if (r >= TUN_PREFIX_BYTES && (!TUN_PREFIX_BYTES || ReadBE32(packet->data - TUN_PREFIX_BYTES) == AF_INET)) { worker_->HandleTunPacket(packet); packet = AllocPacket(); } } } return NULL; } void *TunLoop::WriterMain() { Packet *queue; pthread_mutex_lock(&lock_); for (;;) { // Grab the whole list while (!shutting_down_ && queue_ == NULL) { pthread_cond_wait(&cond_, &lock_); } if (shutting_down_) break; queue = queue_; queue_ = NULL; queue_end_ = &queue_; pthread_mutex_unlock(&lock_); // And send all items in the list while (queue != NULL) { if (TUN_PREFIX_BYTES) WriteBE32(queue->data - TUN_PREFIX_BYTES, AF_INET); int r = write(fd_, queue->data - TUN_PREFIX_BYTES, queue->size + TUN_PREFIX_BYTES); if (r != queue->size + TUN_PREFIX_BYTES) { RERROR("WriterMain failed: %d", errno); break; } Packet *to_free = queue; queue = queue->next; FreePacket(to_free); } pthread_mutex_lock(&lock_); } pthread_mutex_unlock(&lock_); return NULL; } void TunLoop::WriteTunPacket(Packet *packet) { packet->next = NULL; pthread_mutex_lock(&lock_); Packet *old_queue = queue_; *queue_end_ = packet; queue_end_ = &packet->next; if (old_queue == NULL) { pthread_mutex_unlock(&lock_); pthread_cond_signal(&cond_); } else { pthread_mutex_unlock(&lock_); } } struct RouteInfo { uint8 family; uint8 cidr; uint8 ip[16]; uint8 gw[16]; }; class TunsafeBackendBsd : public TunInterface, public UdpInterface { public: TunsafeBackendBsd(); ~TunsafeBackendBsd(); void RunLoop(); void CleanupRoutes(); void SetProcessor(WireguardProcessor *wg) { processor_ = wg; } // -- from TunInterface virtual bool Initialize(const TunConfig &&config, TunConfigOut *out) override; virtual void WriteTunPacket(Packet *packet) override; // -- from UdpInterface virtual bool Initialize(int listen_port) override; virtual void WriteUdpPacket(Packet *packet) override; void HandleSigAlrm() { worker_.HandleSigAlrm(); } void HandleExit() { worker_.NotifyStop(); } private: void AddRoute(uint32 ip, uint32 cidr, uint32 gw); void DelRoute(const RouteInfo &cd); bool AddRoute(int family, const void *dest, int dest_prefix, const void *gateway); bool RunPrePostCommand(const std::vector &vec); WireguardProcessor *processor_; bool got_sig_alarm_; bool exit_; uint32 added_route_addr_, added_route_gw_; WorkerLoop worker_; UdpLoop udp_; TunLoop tun_; std::vector cleanup_commands_; std::vector pre_down_, post_down_; }; TunsafeBackendBsd::TunsafeBackendBsd() : processor_(NULL), got_sig_alarm_(false), exit_(false) { } TunsafeBackendBsd::~TunsafeBackendBsd() { } static uint32 CidrToNetmaskV4(int cidr) { return cidr == 32 ? 0xffffffff : 0xffffffff << (32 - cidr); } static uint32 ComputeIpv4DefaultRoute(uint32 ip, uint32 netmask) { uint32 default_route_v4 = (ip & netmask) | 1; if (default_route_v4 == ip) default_route_v4++; return default_route_v4; } static void ComputeIpv6DefaultRoute(const uint8 *ipv6_address, uint8 ipv6_cidr, uint8 *default_route_v6) { memcpy(default_route_v6, ipv6_address, 16); // clear the last bits of the ipv6 address to match the cidr. size_t n = (ipv6_cidr + 7) >> 3; memset(&default_route_v6[n], 0, 16 - n); if (n == 0) return; // adjust the final byte default_route_v6[n - 1] &= ~(0xff >> (ipv6_cidr & 7)); // set the very last byte to something default_route_v6[15] |= 1; // ensure it doesn't collide if (memcmp(default_route_v6, ipv6_address, 16) == 0) default_route_v6[15] ^= 3; } void TunsafeBackendBsd::AddRoute(uint32 ip, uint32 cidr, uint32 gw) { uint32 ip_be, gw_be; WriteBE32(&ip_be, ip); WriteBE32(&gw_be, gw); AddRoute(AF_INET, &ip_be, cidr, &gw_be); } static void AddOrRemoveRoute(const RouteInfo &cd, bool remove) { char buf1[kSizeOfAddress], buf2[kSizeOfAddress]; print_ip_prefix(buf1, cd.family, cd.ip, cd.cidr); print_ip_prefix(buf2, cd.family, cd.gw, -1); #if defined(OS_LINUX) const char *cmd = remove ? "delete" : "add"; if (cd.family == AF_INET) { RunCommand("/sbin/route %s -net %s gw %s", cmd, buf1, buf2); } else { RunCommand("/sbin/route %s -net inet6 %s gw %s", cmd, buf1, buf2); } #elif defined(OS_MACOSX) const char *cmd = remove ? "delete" : "add"; if (cd.family == AF_INET) { RunCommand("/sbin/route -q %s %s %s", cmd, buf1, buf2); } else { RunCommand("/sbin/route -q %s -inet6 %s %s", cmd, buf1, buf2); } #endif } bool TunsafeBackendBsd::AddRoute(int family, const void *dest, int dest_prefix, const void *gateway) { RouteInfo c; c.family = family; size_t len = (family == AF_INET) ? 4 : 16; memcpy(c.ip, dest, len); memcpy(c.gw, gateway, len); c.cidr = dest_prefix; cleanup_commands_.push_back(c); AddOrRemoveRoute(c, false); return true; } void TunsafeBackendBsd::DelRoute(const RouteInfo &cd) { AddOrRemoveRoute(cd, true); } static bool IsIpv6AddressSet(const void *p) { return (ReadLE64(p) | ReadLE64((char*)p + 8)) != 0; } // Called to initialize tun bool TunsafeBackendBsd::Initialize(const TunConfig &&config, TunConfigOut *out) override { char def_iface[12]; if (!RunPrePostCommand(config.pre_post_commands.pre_up)) { RERROR("Pre command failed!"); return false; } out->enable_neighbor_discovery_spoofing = false; if (!tun_.Initialize(&worker_)) return false; if (config.ipv6_cidr) RERROR("IPv6 not supported"); uint32 netmask = CidrToNetmaskV4(config.cidr); uint32 default_route_v4 = ComputeIpv4DefaultRoute(config.ip, netmask); RunCommand("/sbin/ifconfig %s %A mtu %d %A netmask %A up", tun_.devname(), config.ip, config.mtu, config.ip, netmask); AddRoute(config.ip & netmask, config.cidr, config.ip); if (config.use_ipv4_default_route) { if (config.default_route_endpoint_v4) { uint32 gw; if (!GetDefaultRoute(def_iface, sizeof(def_iface), &gw)) { RERROR("Unable to determine default interface."); return false; } AddRoute(config.default_route_endpoint_v4, 32, gw); } AddRoute(0x00000000, 1, default_route_v4); AddRoute(0x80000000, 1, default_route_v4); } uint8 default_route_v6[16]; if (config.ipv6_cidr) { static const uint8 matchall_1_route[17] = {0x80, 0, 0, 0}; char buf[kSizeOfAddress]; ComputeIpv6DefaultRoute(config.ipv6_address, config.ipv6_cidr, default_route_v6); RunCommand("/sbin/ifconfig %s inet6 %s", tun_.devname(), print_ip_prefix(buf, AF_INET6, config.ipv6_address, config.ipv6_cidr)); if (config.use_ipv6_default_route) { if (IsIpv6AddressSet(config.default_route_endpoint_v6)) { RERROR("default_route_endpoint_v6 not supported"); } AddRoute(AF_INET6, matchall_1_route + 1, 1, default_route_v6); AddRoute(AF_INET6, matchall_1_route + 0, 1, default_route_v6); } } // Add all the extra routes for (auto it = config.extra_routes.begin(); it != config.extra_routes.end(); ++it) { if (it->size == 32) { AddRoute(ReadBE32(it->addr), it->cidr, default_route_v4); } else if (it->size == 128 && config.ipv6_cidr) { AddRoute(AF_INET6, it->addr, it->cidr, default_route_v6); } } RunPrePostCommand(config.pre_post_commands.post_up); pre_down_ = std::move(config.pre_post_commands.pre_down); post_down_ = std::move(config.pre_post_commands.post_down); return true; } void TunsafeBackendBsd::CleanupRoutes() { RunPrePostCommand(pre_down_); for(auto it = cleanup_commands_.begin(); it != cleanup_commands_.end(); ++it) DelRoute(*it); cleanup_commands_.clear(); RunPrePostCommand(post_down_); pre_down_.clear(); post_down_.clear(); } static bool RunOneCommand(const std::string &cmd) { RINFO("Run: %s", cmd.c_str()); int exit_code = system(cmd.c_str()); if (exit_code) { RERROR("Run Failed (%d) : %s", exit_code, cmd.c_str()); return false; } return true; } bool TunsafeBackendBsd::RunPrePostCommand(const std::vector &vec) { bool success = true; for (auto it = vec.begin(); it != vec.end(); ++it) { success &= RunOneCommand(*it); } return success; } void TunsafeBackendBsd::WriteTunPacket(Packet *packet) override { tun_.WriteTunPacket(packet); } // Called to initialize udp bool TunsafeBackendBsd::Initialize(int listen_port) override { return udp_.Initialize(listen_port, &worker_); } void TunsafeBackendBsd::WriteUdpPacket(Packet *packet) override { udp_.WriteUdpPacket(packet); } static TunsafeBackendBsd *g_tunsafe_backend_bsd; static void SigAlrm(int sig) { if (g_tunsafe_backend_bsd) g_tunsafe_backend_bsd->HandleSigAlrm(); } static void SigUsr1(int sig) { } static bool did_ctrlc; void SigInt(int sig) { if (did_ctrlc) exit(1); did_ctrlc = true; write(1, "Ctrl-C detected. Exiting. Press again to force quit.\n", sizeof("Ctrl-C detected. Exiting. Press again to force quit.\n")-1); if (g_tunsafe_backend_bsd) g_tunsafe_backend_bsd->HandleExit(); } void TunsafeBackendBsd::RunLoop() { int free_packet_interval = 10; assert(!g_tunsafe_backend_bsd); assert(processor_); g_tunsafe_backend_bsd = this; // We want an alarm signal every second. { struct sigaction act = {0}; act.sa_handler = SigAlrm; if (sigaction(SIGALRM, &act, NULL) < 0) { RERROR("Unable to install SIGALRM handler."); return; } } { struct sigaction act = {0}; act.sa_handler = SigInt; if (sigaction(SIGINT, &act, NULL) < 0) { RERROR("Unable to install SIGINT handler."); return; } } { struct sigaction act = {0}; act.sa_handler = SigUsr1; if (sigaction(SIGUSR1, &act, NULL) < 0) { RERROR("Unable to install SIGUSR1 handler."); return; } } #if defined(OS_LINUX) || defined(OS_FREEBSD) { struct itimerspec tv = {0}; struct sigevent sev; timer_t timer_id; tv.it_interval.tv_sec = 1; tv.it_value.tv_sec = 1; sev.sigev_notify = SIGEV_SIGNAL; sev.sigev_signo = SIGALRM; sev.sigev_value.sival_ptr = NULL; if (timer_create(CLOCK_MONOTONIC, &sev, &timer_id) < 0) { RERROR("timer_create failed"); return; } if (timer_settime(timer_id, 0, &tv, NULL) < 0) { RERROR("timer_settime failed"); return; } } #elif defined(OS_MACOSX) ualarm(1000000, 1000000); #endif worker_.Initialize(processor_); // Start the processing threads udp_.Start(); tun_.Start(); worker_.ThreadMain(); tun_.Stop(); udp_.Stop(); g_tunsafe_backend_bsd = NULL; } void InitCpuFeatures(); void Benchmark(); uint32 g_ui_ip; const char *print_ip(char buf[kSizeOfAddress], in_addr_t ip) { snprintf(buf, kSizeOfAddress, "%d.%d.%d.%d", (ip >> 24) & 0xff, (ip >> 16) & 0xff, (ip >> 8) & 0xff, (ip >> 0) & 0xff); return buf; } class MyProcessorDelegate : public ProcessorDelegate { public: virtual void OnConnected(in_addr_t my_ip) { if (my_ip != g_ui_ip) { if (my_ip) { char buf[kSizeOfAddress]; print_ip(buf, my_ip); RINFO("Connection established. IP %s", buf); } g_ui_ip = my_ip; } } virtual void OnDisconnected() { MyProcessorDelegate::OnConnected(0); } }; int main(int argc, char **argv) { bool exit_flag = false; InitCpuFeatures(); if (argc == 2 && strcmp(argv[1], "--benchmark") == 0) { Benchmark(); return 0; } fprintf(stderr, "%s\n", TUNSAFE_VERSION_STRING); if (argc < 2) { fprintf(stderr, "Syntax: tunsafe file.conf\n"); return 1; } #if defined(OS_MACOSX) InitOsxGetMilliseconds(); #endif SetThreadName("tunsafe-m"); MyProcessorDelegate my_procdel; TunsafeBackendBsd socket_loop; WireguardProcessor wg(&socket_loop, &socket_loop, &my_procdel); socket_loop.SetProcessor(&wg); if (!ParseWireGuardConfigFile(&wg, argv[1], &exit_flag)) return 1; if (!wg.Start()) return 1; socket_loop.RunLoop(); socket_loop.CleanupRoutes(); return 0; }