tunsafe-clang15/network_bsd.cpp

523 lines
14 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: AGPL-1.0-only
// Copyright (C) 2018 Ludvig Strigeus <info@tunsafe.com>. All Rights Reserved.
#include "network_bsd_common.h"
#include "tunsafe_endian.h"
#include "util.h"
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netinet/in.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include <signal.h>
#include <poll.h>
static Packet *freelist;
void FreePacket(Packet *packet) {
packet->next = freelist;
freelist = packet;
}
Packet *AllocPacket() {
Packet *p = freelist;
if (p) {
freelist = p->next;
} else {
p = (Packet*)malloc(kPacketAllocSize);
if (p == NULL) {
RERROR("Allocation failure");
abort();
}
}
p->data = p->data_buf + Packet::HEADROOM_BEFORE;
p->size = 0;
return p;
}
void FreePackets() {
Packet *p;
while ( (p = freelist ) != NULL) {
freelist = p->next;
free(p);
}
}
class TunsafeBackendBsdImpl : public TunsafeBackendBsd {
public:
TunsafeBackendBsdImpl();
virtual ~TunsafeBackendBsdImpl();
virtual void RunLoopInner() override;
virtual bool InitializeTun(char devname[16]) override;
// -- from TunInterface
virtual void WriteTunPacket(Packet *packet) override;
// -- from UdpInterface
virtual bool Configure(int listen_port) override;
virtual void WriteUdpPacket(Packet *packet) override;
virtual void HandleSigAlrm() override { got_sig_alarm_ = true; }
virtual void HandleExit() override { exit_ = true; }
private:
bool ReadFromUdp(bool overload);
bool ReadFromTun();
bool WriteToUdp();
bool WriteToTun();
bool InitializeUnixDomainSocket(const char *devname);
// Exists for the unix domain sockets
struct SockInfo {
bool is_listener;
std::string inbuf, outbuf;
};
bool HandleSpecialPollfd(struct pollfd *pollfd, struct SockInfo *sockinfo);
void CloseSpecialPollfd(size_t i);
void SetUdpFd(int fd);
void SetTunFd(int fd);
bool got_sig_alarm_;
bool exit_;
bool tun_readable_, tun_writable_;
bool udp_readable_, udp_writable_;
Packet *tun_queue_, **tun_queue_end_;
Packet *udp_queue_, **udp_queue_end_;
Packet *read_packet_;
enum {
kMaxPollFd = 5,
kPollFdTun = 0,
kPollFdUdp = 1,
kPollFdUnix = 2,
};
unsigned int pollfd_num_;
struct pollfd pollfd_[kMaxPollFd];
struct SockInfo sockinfo_[kMaxPollFd - 2];
struct sockaddr_un un_addr_;
UnixSocketDeletionWatcher un_deletion_watcher_;
};
TunsafeBackendBsdImpl::TunsafeBackendBsdImpl()
: tun_readable_(false),
tun_writable_(false),
udp_readable_(false),
udp_writable_(false),
got_sig_alarm_(false),
exit_(false),
tun_queue_(NULL),
tun_queue_end_(&tun_queue_),
udp_queue_(NULL),
udp_queue_end_(&udp_queue_),
read_packet_(NULL) {
read_packet_ = AllocPacket();
for(size_t i = 0; i < kMaxPollFd; i++)
pollfd_[i].fd = -1;
pollfd_num_ = 3;
sockinfo_[0].is_listener = true;
memset(&un_addr_, 0, sizeof(un_addr_));
}
TunsafeBackendBsdImpl::~TunsafeBackendBsdImpl() {
if (un_addr_.sun_path[0])
unlink(un_addr_.sun_path);
if (read_packet_)
FreePacket(read_packet_);
for(size_t i = 0; i < pollfd_num_; i++)
close(pollfd_[i].fd);
}
void TunsafeBackendBsdImpl::SetUdpFd(int fd) {
pollfd_[kPollFdUdp].fd = fd;
pollfd_[kPollFdUdp].events = POLLIN;
udp_writable_ = true;
}
void TunsafeBackendBsdImpl::SetTunFd(int fd) {
pollfd_[kPollFdTun].fd = fd;
pollfd_[kPollFdTun].events = POLLIN;
tun_writable_ = true;
}
bool TunsafeBackendBsdImpl::ReadFromUdp(bool overload) {
socklen_t sin_len;
sin_len = sizeof(read_packet_->addr.sin);
int r = recvfrom(pollfd_[kPollFdUdp].fd, read_packet_->data, kPacketCapacity, 0,
(sockaddr*)&read_packet_->addr.sin, &sin_len);
if (r >= 0) {
// printf("Read %d bytes from UDP\n", r);
read_packet_->sin_size = sin_len;
read_packet_->size = r;
if (processor_) {
processor_->HandleUdpPacket(read_packet_, overload);
read_packet_ = AllocPacket();
}
return true;
} else {
if (errno != EAGAIN) {
fprintf(stderr, "Read from UDP failed\n");
}
udp_readable_ = false;
return false;
}
}
bool TunsafeBackendBsdImpl::WriteToUdp() {
assert(udp_writable_);
// RINFO("Send %d bytes to %s", (int)udp_queue_->size, inet_ntoa(udp_queue_->sin.sin_addr));
int r = sendto(pollfd_[kPollFdUdp].fd, udp_queue_->data, udp_queue_->size, 0,
(sockaddr*)&udp_queue_->addr.sin, sizeof(udp_queue_->addr.sin));
if (r < 0) {
if (errno == EAGAIN) {
udp_writable_ = false;
pollfd_[kPollFdUdp].events = POLLIN | POLLOUT;
return false;
}
perror("Write to UDP failed");
} else {
if (r != udp_queue_->size)
perror("Write to udp incomplete!");
// else
// RINFO("Wrote %d bytes to UDP", r);
}
Packet *next = udp_queue_->next;
FreePacket(udp_queue_);
if ((udp_queue_ = next) != NULL) return true;
udp_queue_end_ = &udp_queue_;
return false;
}
static inline bool IsCompatibleProto(uint32 v) {
return v == AF_INET || v == AF_INET6;
}
bool TunsafeBackendBsdImpl::ReadFromTun() {
assert(tun_readable_);
Packet *packet = read_packet_;
int r = read(pollfd_[kPollFdTun].fd, packet->data - TUN_PREFIX_BYTES, kPacketCapacity + TUN_PREFIX_BYTES);
if (r >= 0) {
// printf("Read %d bytes from TUN\n", r);
packet->size = r - TUN_PREFIX_BYTES;
if (r >= TUN_PREFIX_BYTES && (!TUN_PREFIX_BYTES || IsCompatibleProto(ReadBE32(packet->data - TUN_PREFIX_BYTES))) && processor_) {
// printf("%X %X %X %X %X %X %X %X\n",
// read_packet_->data[0], read_packet_->data[1], read_packet_->data[2], read_packet_->data[3],
// read_packet_->data[4], read_packet_->data[5], read_packet_->data[6], read_packet_->data[7]);
read_packet_ = AllocPacket();
processor_->HandleTunPacket(packet);
}
return true;
} else {
if (errno != EAGAIN) {
fprintf(stderr, "Read from tun failed\n");
}
tun_readable_ = false;
return false;
}
}
static uint32 GetProtoFromPacket(const uint8 *data, size_t size) {
return size < 1 || (data[0] >> 4) != 6 ? AF_INET : AF_INET6;
}
bool TunsafeBackendBsdImpl::WriteToTun() {
assert(tun_writable_);
if (TUN_PREFIX_BYTES) {
WriteBE32(tun_queue_->data - TUN_PREFIX_BYTES, GetProtoFromPacket(tun_queue_->data, tun_queue_->size));
}
int r = write(pollfd_[kPollFdTun].fd, tun_queue_->data - TUN_PREFIX_BYTES, tun_queue_->size + TUN_PREFIX_BYTES);
if (r < 0) {
if (errno == EAGAIN) {
tun_writable_ = false;
pollfd_[kPollFdTun].events = POLLIN | POLLOUT;
return false;
}
RERROR("Write to tun failed");
} else {
r -= TUN_PREFIX_BYTES;
if (r != tun_queue_->size)
RERROR("Write to tun incomplete!");
// else
// RINFO("Wrote %d bytes to TUN", r);
}
Packet *next = tun_queue_->next;
FreePacket(tun_queue_);
if ((tun_queue_ = next) != NULL) return true;
tun_queue_end_ = &tun_queue_;
return false;
}
bool TunsafeBackendBsdImpl::InitializeTun(char devname[16]) {
int tun_fd = open_tun(devname, 16);
if (tun_fd < 0) { RERROR("Error opening tun device"); return false; }
fcntl(tun_fd, F_SETFD, FD_CLOEXEC);
fcntl(tun_fd, F_SETFL, O_NONBLOCK);
SetTunFd(tun_fd);
InitializeUnixDomainSocket(devname);
return true;
}
void TunsafeBackendBsdImpl::WriteTunPacket(Packet *packet) override {
assert(pollfd_[kPollFdTun].fd >= 0);
Packet *queue_is_used = tun_queue_;
*tun_queue_end_ = packet;
tun_queue_end_ = &packet->next;
packet->next = NULL;
if (!queue_is_used)
WriteToTun();
}
// Called to initialize udp
bool TunsafeBackendBsdImpl::Configure(int listen_port) override {
int udp_fd = open_udp(listen_port);
if (udp_fd < 0) { RERROR("Error opening udp"); return false; }
fcntl(udp_fd, F_SETFD, FD_CLOEXEC);
fcntl(udp_fd, F_SETFL, O_NONBLOCK);
SetUdpFd(udp_fd);
return true;
}
void TunsafeBackendBsdImpl::WriteUdpPacket(Packet *packet) override {
assert(pollfd_[kPollFdUdp].fd >= 0);
Packet *queue_is_used = udp_queue_;
*udp_queue_end_ = packet;
udp_queue_end_ = &packet->next;
packet->next = NULL;
if (!queue_is_used)
WriteToUdp();
}
bool TunsafeBackendBsdImpl::InitializeUnixDomainSocket(const char *devname) {
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd == -1) {
RERROR("Error creating unix domain socket");
return false;
}
fcntl(fd, F_SETFD, FD_CLOEXEC);
fcntl(fd, F_SETFL, O_NONBLOCK);
mkdir("/var/run/wireguard", 0755);
un_addr_.sun_family = AF_UNIX;
snprintf(un_addr_.sun_path, sizeof(un_addr_.sun_path), "/var/run/wireguard/%s.sock", devname);
unlink(un_addr_.sun_path);
if (bind(fd, (struct sockaddr*)&un_addr_, sizeof(un_addr_)) == -1) {
RERROR("Error binding unix domain socket");
close(fd);
return false;
}
if (listen(fd, 5) == -1) {
RERROR("Error listening on unix domain socket");
close(fd);
return false;
}
pollfd_[kPollFdUnix].fd = fd;
pollfd_[kPollFdUnix].events = POLLIN;
return true;
}
static const char *FindMessageEnd(const char *start, size_t size) {
if (size <= 1)
return NULL;
const char *start_end = start + size - 1;
for(;(start = (const char*)memchr(start, '\n', start_end - start)) != NULL; start++) {
if (start[1] == '\n')
return start + 2;
}
return NULL;
}
bool TunsafeBackendBsdImpl::HandleSpecialPollfd(struct pollfd *pfd, struct SockInfo *sockinfo) {
// handle domain socket thing
if (sockinfo->is_listener) {
if (pfd->revents & POLLIN) {
// wait if we can't allocate more pollfd
if (pollfd_num_ == kMaxPollFd) {
pfd->events = 0;
return true;
}
int fd = accept(pfd->fd, NULL, NULL);
if (fd >= 0) {
size_t slot = pollfd_num_++;
pollfd_[slot].fd = fd;
pollfd_[slot].events = POLLIN;
pollfd_[slot].revents = 0;
sockinfo_[slot - 2].is_listener = false;
} else {
RERROR("Unix domain socket accept failed");
}
}
if (pfd->revents & ~POLLIN) {
RERROR("Unix domain socket got an error code");
return false;
}
return true;
}
if (pfd->revents & POLLIN) {
char buf[4096];
// read as much data as we can until we see \n\n
ssize_t n = recv(pfd->fd, buf, sizeof(buf), 0);
if (n <= 0)
return (n == -1 && errno == EAGAIN); // premature eof or error
sockinfo->inbuf.append(buf, n);
const char *message_end = FindMessageEnd(&sockinfo->inbuf[0], sockinfo->inbuf.size());
if (message_end) {
if (message_end != &sockinfo->inbuf[sockinfo->inbuf.size()])
return false; // trailing data?
WgConfig::HandleConfigurationProtocolMessage(processor_, std::move(sockinfo->inbuf), &sockinfo->outbuf);
if (!sockinfo->outbuf.size())
return false;
pfd->revents = pfd->events = POLLOUT;
}
}
if (pfd->revents & POLLOUT) {
size_t n = send(pfd->fd, sockinfo->outbuf.data(), sockinfo->outbuf.size(), 0);
if (n <= 0)
return (n == -1 && errno == EAGAIN); // premature eof or error
sockinfo->outbuf.erase(0, n);
if (!sockinfo->outbuf.size())
return false;
}
if (pfd->revents & ~(POLLIN | POLLOUT)) {
RERROR("Unix domain socket got an error code");
return false;
}
return true;
}
void TunsafeBackendBsdImpl::CloseSpecialPollfd(size_t i) {
close(pollfd_[i].fd);
pollfd_[i].fd = -1;
sockinfo_[i - 2].inbuf.clear();
sockinfo_[i - 2].outbuf.clear();
pollfd_[i] = pollfd_[(size_t)pollfd_num_ - 1];
std::swap(sockinfo_[i - 2], sockinfo_[(size_t)pollfd_num_ - 1 - 2]);
// Can now allow more sockets?
if (pollfd_num_-- == kMaxPollFd && sockinfo_[kPollFdUnix - 2].is_listener)
pollfd_[kPollFdUnix].events = POLLIN;
}
void TunsafeBackendBsdImpl::RunLoopInner() {
int free_packet_interval = 10;
int overload_ctr = 0;
if (!un_deletion_watcher_.Start(un_addr_.sun_path, &exit_))
return;
while (!exit_) {
int n = -1;
if (got_sig_alarm_) {
got_sig_alarm_ = false;
if (un_deletion_watcher_.Poll(un_addr_.sun_path)) {
RINFO("Unix socket %s deleted.", un_addr_.sun_path);
break;
}
processor_->SecondLoop();
if (free_packet_interval == 0) {
FreePackets();
free_packet_interval = 10;
}
free_packet_interval--;
overload_ctr -= (overload_ctr != 0);
}
#if defined(OS_LINUX) || defined(OS_FREEBSD)
n = ppoll(pollfd_, pollfd_num_, NULL, &orig_signal_mask_);
#else
n = poll(pollfd_, pollfd_num_, -1);
#endif
if (n == -1) {
if (errno != EINTR) {
RERROR("poll failed");
break;
}
} else {
if (pollfd_[kPollFdTun].revents & (POLLERR | POLLHUP | POLLNVAL)) {
if (pollfd_[kPollFdTun].revents & POLLERR) {
tun_interface_gone_ = true;
RERROR("Tun interface gone, closing.");
} else {
RERROR("Tun interface error %d, closing.", pollfd_[kPollFdTun].revents);
}
break;
}
tun_readable_ = (pollfd_[kPollFdTun].revents & POLLIN) != 0;
if (pollfd_[kPollFdTun].revents & POLLOUT) {
pollfd_[kPollFdTun].events = POLLIN;
tun_writable_ = true;
}
if (pollfd_[kPollFdUdp].revents & (POLLERR | POLLHUP | POLLNVAL)) {
RERROR("UDP error %d, closing.", pollfd_[kPollFdUdp].revents);
break;
}
udp_readable_ = (pollfd_[kPollFdUdp].revents & POLLIN) != 0;
if (pollfd_[kPollFdUdp].revents & POLLOUT) {
pollfd_[kPollFdUdp].events = POLLIN;
udp_writable_ = true;
}
for(size_t i = 2; i < pollfd_num_; i++) {
if (pollfd_[i].revents && !HandleSpecialPollfd(&pollfd_[i], &sockinfo_[i - 2])) {
// Close the fd / discard the sockinfo
CloseSpecialPollfd(i);
i--;
}
}
}
bool overload = (overload_ctr != 0);
for(int loop = 0; ; loop++) {
// Whenever we don't finish set overload ctr.
if (loop == 256) {
overload_ctr = 4;
break;
}
bool more_work = false;
if (tun_queue_ != NULL && tun_writable_) more_work |= WriteToTun();
if (udp_queue_ != NULL && udp_writable_) more_work |= WriteToUdp();
if (tun_readable_) more_work |= ReadFromTun();
if (udp_readable_) more_work |= ReadFromUdp(overload);
if (!more_work)
break;
}
processor_->RunAllMainThreadScheduled();
}
un_deletion_watcher_.Stop();
}
TunsafeBackendBsd *CreateTunsafeBackendBsd() {
return new TunsafeBackendBsdImpl;
}