431 lines
12 KiB
Perl
431 lines
12 KiB
Perl
|
#! /usr/bin/env perl
|
||
|
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the OpenSSL license (the "License"). You may not use
|
||
|
# this file except in compliance with the License. You can obtain a copy
|
||
|
# in the file LICENSE in the source distribution or at
|
||
|
# https://www.openssl.org/source/license.html
|
||
|
|
||
|
#
|
||
|
# ====================================================================
|
||
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||
|
# project. The module is, however, dual licensed under OpenSSL and
|
||
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
||
|
# ====================================================================
|
||
|
#
|
||
|
# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
|
||
|
#
|
||
|
# June 2014
|
||
|
#
|
||
|
# Initial version was developed in tight cooperation with Ard
|
||
|
# Biesheuvel <ard.biesheuvel@linaro.org> from bits-n-pieces from
|
||
|
# other assembly modules. Just like aesv8-armx.pl this module
|
||
|
# supports both AArch32 and AArch64 execution modes.
|
||
|
#
|
||
|
# July 2014
|
||
|
#
|
||
|
# Implement 2x aggregated reduction [see ghash-x86.pl for background
|
||
|
# information].
|
||
|
#
|
||
|
# Current performance in cycles per processed byte:
|
||
|
#
|
||
|
# PMULL[2] 32-bit NEON(*)
|
||
|
# Apple A7 0.92 5.62
|
||
|
# Cortex-A53 1.01 8.39
|
||
|
# Cortex-A57 1.17 7.61
|
||
|
# Denver 0.71 6.02
|
||
|
# Mongoose 1.10 8.06
|
||
|
#
|
||
|
# (*) presented for reference/comparison purposes;
|
||
|
|
||
|
$flavour = shift;
|
||
|
$output = shift;
|
||
|
|
||
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||
|
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
|
||
|
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
|
||
|
die "can't locate arm-xlate.pl";
|
||
|
|
||
|
open OUT,"| \"$^X\" $xlate $flavour $output";
|
||
|
*STDOUT=*OUT;
|
||
|
|
||
|
$Xi="x0"; # argument block
|
||
|
$Htbl="x1";
|
||
|
$inp="x2";
|
||
|
$len="x3";
|
||
|
|
||
|
$inc="x12";
|
||
|
|
||
|
{
|
||
|
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
|
||
|
my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
|
||
|
|
||
|
$code=<<___;
|
||
|
#include <openssl/arm_arch.h>
|
||
|
|
||
|
.text
|
||
|
___
|
||
|
$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
|
||
|
$code.=<<___ if ($flavour !~ /64/);
|
||
|
.fpu neon
|
||
|
.code 32
|
||
|
#undef __thumb2__
|
||
|
___
|
||
|
|
||
|
################################################################################
|
||
|
# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
|
||
|
#
|
||
|
# input: 128-bit H - secret parameter E(K,0^128)
|
||
|
# output: precomputed table filled with degrees of twisted H;
|
||
|
# H is twisted to handle reverse bitness of GHASH;
|
||
|
# only few of 16 slots of Htable[16] are used;
|
||
|
# data is opaque to outside world (which allows to
|
||
|
# optimize the code independently);
|
||
|
#
|
||
|
$code.=<<___;
|
||
|
.global gcm_init_v8
|
||
|
.type gcm_init_v8,%function
|
||
|
.align 4
|
||
|
gcm_init_v8:
|
||
|
vld1.64 {$t1},[x1] @ load input H
|
||
|
vmov.i8 $xC2,#0xe1
|
||
|
vshl.i64 $xC2,$xC2,#57 @ 0xc2.0
|
||
|
vext.8 $IN,$t1,$t1,#8
|
||
|
vshr.u64 $t2,$xC2,#63
|
||
|
vdup.32 $t1,${t1}[1]
|
||
|
vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01
|
||
|
vshr.u64 $t2,$IN,#63
|
||
|
vshr.s32 $t1,$t1,#31 @ broadcast carry bit
|
||
|
vand $t2,$t2,$t0
|
||
|
vshl.i64 $IN,$IN,#1
|
||
|
vext.8 $t2,$t2,$t2,#8
|
||
|
vand $t0,$t0,$t1
|
||
|
vorr $IN,$IN,$t2 @ H<<<=1
|
||
|
veor $H,$IN,$t0 @ twisted H
|
||
|
vst1.64 {$H},[x0],#16 @ store Htable[0]
|
||
|
|
||
|
@ calculate H^2
|
||
|
vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing
|
||
|
vpmull.p64 $Xl,$H,$H
|
||
|
veor $t0,$t0,$H
|
||
|
vpmull2.p64 $Xh,$H,$H
|
||
|
vpmull.p64 $Xm,$t0,$t0
|
||
|
|
||
|
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
|
||
|
veor $t2,$Xl,$Xh
|
||
|
veor $Xm,$Xm,$t1
|
||
|
veor $Xm,$Xm,$t2
|
||
|
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
|
||
|
|
||
|
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
|
||
|
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
|
||
|
veor $Xl,$Xm,$t2
|
||
|
|
||
|
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
|
||
|
vpmull.p64 $Xl,$Xl,$xC2
|
||
|
veor $t2,$t2,$Xh
|
||
|
veor $H2,$Xl,$t2
|
||
|
|
||
|
vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing
|
||
|
veor $t1,$t1,$H2
|
||
|
vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
|
||
|
vst1.64 {$Hhl-$H2},[x0] @ store Htable[1..2]
|
||
|
|
||
|
ret
|
||
|
.size gcm_init_v8,.-gcm_init_v8
|
||
|
___
|
||
|
################################################################################
|
||
|
# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
|
||
|
#
|
||
|
# input: Xi - current hash value;
|
||
|
# Htable - table precomputed in gcm_init_v8;
|
||
|
# output: Xi - next hash value Xi;
|
||
|
#
|
||
|
$code.=<<___;
|
||
|
.global gcm_gmult_v8
|
||
|
.type gcm_gmult_v8,%function
|
||
|
.align 4
|
||
|
gcm_gmult_v8:
|
||
|
vld1.64 {$t1},[$Xi] @ load Xi
|
||
|
vmov.i8 $xC2,#0xe1
|
||
|
vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ...
|
||
|
vshl.u64 $xC2,$xC2,#57
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $t1,$t1
|
||
|
#endif
|
||
|
vext.8 $IN,$t1,$t1,#8
|
||
|
|
||
|
vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
|
||
|
veor $t1,$t1,$IN @ Karatsuba pre-processing
|
||
|
vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
|
||
|
vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
|
||
|
|
||
|
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
|
||
|
veor $t2,$Xl,$Xh
|
||
|
veor $Xm,$Xm,$t1
|
||
|
veor $Xm,$Xm,$t2
|
||
|
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
|
||
|
|
||
|
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
|
||
|
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
|
||
|
veor $Xl,$Xm,$t2
|
||
|
|
||
|
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
|
||
|
vpmull.p64 $Xl,$Xl,$xC2
|
||
|
veor $t2,$t2,$Xh
|
||
|
veor $Xl,$Xl,$t2
|
||
|
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $Xl,$Xl
|
||
|
#endif
|
||
|
vext.8 $Xl,$Xl,$Xl,#8
|
||
|
vst1.64 {$Xl},[$Xi] @ write out Xi
|
||
|
|
||
|
ret
|
||
|
.size gcm_gmult_v8,.-gcm_gmult_v8
|
||
|
___
|
||
|
################################################################################
|
||
|
# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
|
||
|
#
|
||
|
# input: table precomputed in gcm_init_v8;
|
||
|
# current hash value Xi;
|
||
|
# pointer to input data;
|
||
|
# length of input data in bytes, but divisible by block size;
|
||
|
# output: next hash value Xi;
|
||
|
#
|
||
|
$code.=<<___;
|
||
|
.global gcm_ghash_v8
|
||
|
.type gcm_ghash_v8,%function
|
||
|
.align 4
|
||
|
gcm_ghash_v8:
|
||
|
___
|
||
|
$code.=<<___ if ($flavour !~ /64/);
|
||
|
vstmdb sp!,{d8-d15} @ 32-bit ABI says so
|
||
|
___
|
||
|
$code.=<<___;
|
||
|
vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
|
||
|
@ "[rotated]" means that
|
||
|
@ loaded value would have
|
||
|
@ to be rotated in order to
|
||
|
@ make it appear as in
|
||
|
@ alorithm specification
|
||
|
subs $len,$len,#32 @ see if $len is 32 or larger
|
||
|
mov $inc,#16 @ $inc is used as post-
|
||
|
@ increment for input pointer;
|
||
|
@ as loop is modulo-scheduled
|
||
|
@ $inc is zeroed just in time
|
||
|
@ to preclude oversteping
|
||
|
@ inp[len], which means that
|
||
|
@ last block[s] are actually
|
||
|
@ loaded twice, but last
|
||
|
@ copy is not processed
|
||
|
vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2
|
||
|
vmov.i8 $xC2,#0xe1
|
||
|
vld1.64 {$H2},[$Htbl]
|
||
|
cclr $inc,eq @ is it time to zero $inc?
|
||
|
vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi
|
||
|
vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0]
|
||
|
vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $t0,$t0
|
||
|
vrev64.8 $Xl,$Xl
|
||
|
#endif
|
||
|
vext.8 $IN,$t0,$t0,#8 @ rotate I[0]
|
||
|
b.lo .Lodd_tail_v8 @ $len was less than 32
|
||
|
___
|
||
|
{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
|
||
|
#######
|
||
|
# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
|
||
|
# [(H*Ii+1) + (H*Xi+1)] mod P =
|
||
|
# [(H*Ii+1) + H^2*(Ii+Xi)] mod P
|
||
|
#
|
||
|
$code.=<<___;
|
||
|
vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1]
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $t1,$t1
|
||
|
#endif
|
||
|
vext.8 $In,$t1,$t1,#8
|
||
|
veor $IN,$IN,$Xl @ I[i]^=Xi
|
||
|
vpmull.p64 $Xln,$H,$In @ H·Ii+1
|
||
|
veor $t1,$t1,$In @ Karatsuba pre-processing
|
||
|
vpmull2.p64 $Xhn,$H,$In
|
||
|
b .Loop_mod2x_v8
|
||
|
|
||
|
.align 4
|
||
|
.Loop_mod2x_v8:
|
||
|
vext.8 $t2,$IN,$IN,#8
|
||
|
subs $len,$len,#32 @ is there more data?
|
||
|
vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo
|
||
|
cclr $inc,lo @ is it time to zero $inc?
|
||
|
|
||
|
vpmull.p64 $Xmn,$Hhl,$t1
|
||
|
veor $t2,$t2,$IN @ Karatsuba pre-processing
|
||
|
vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi
|
||
|
veor $Xl,$Xl,$Xln @ accumulate
|
||
|
vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
|
||
|
vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2]
|
||
|
|
||
|
veor $Xh,$Xh,$Xhn
|
||
|
cclr $inc,eq @ is it time to zero $inc?
|
||
|
veor $Xm,$Xm,$Xmn
|
||
|
|
||
|
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
|
||
|
veor $t2,$Xl,$Xh
|
||
|
veor $Xm,$Xm,$t1
|
||
|
vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3]
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $t0,$t0
|
||
|
#endif
|
||
|
veor $Xm,$Xm,$t2
|
||
|
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
|
||
|
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $t1,$t1
|
||
|
#endif
|
||
|
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
|
||
|
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
|
||
|
vext.8 $In,$t1,$t1,#8
|
||
|
vext.8 $IN,$t0,$t0,#8
|
||
|
veor $Xl,$Xm,$t2
|
||
|
vpmull.p64 $Xln,$H,$In @ H·Ii+1
|
||
|
veor $IN,$IN,$Xh @ accumulate $IN early
|
||
|
|
||
|
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
|
||
|
vpmull.p64 $Xl,$Xl,$xC2
|
||
|
veor $IN,$IN,$t2
|
||
|
veor $t1,$t1,$In @ Karatsuba pre-processing
|
||
|
veor $IN,$IN,$Xl
|
||
|
vpmull2.p64 $Xhn,$H,$In
|
||
|
b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes
|
||
|
|
||
|
veor $Xh,$Xh,$t2
|
||
|
vext.8 $IN,$t0,$t0,#8 @ re-construct $IN
|
||
|
adds $len,$len,#32 @ re-construct $len
|
||
|
veor $Xl,$Xl,$Xh @ re-construct $Xl
|
||
|
b.eq .Ldone_v8 @ is $len zero?
|
||
|
___
|
||
|
}
|
||
|
$code.=<<___;
|
||
|
.Lodd_tail_v8:
|
||
|
vext.8 $t2,$Xl,$Xl,#8
|
||
|
veor $IN,$IN,$Xl @ inp^=Xi
|
||
|
veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi
|
||
|
|
||
|
vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
|
||
|
veor $t1,$t1,$IN @ Karatsuba pre-processing
|
||
|
vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
|
||
|
vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
|
||
|
|
||
|
vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
|
||
|
veor $t2,$Xl,$Xh
|
||
|
veor $Xm,$Xm,$t1
|
||
|
veor $Xm,$Xm,$t2
|
||
|
vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
|
||
|
|
||
|
vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
|
||
|
vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
|
||
|
veor $Xl,$Xm,$t2
|
||
|
|
||
|
vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
|
||
|
vpmull.p64 $Xl,$Xl,$xC2
|
||
|
veor $t2,$t2,$Xh
|
||
|
veor $Xl,$Xl,$t2
|
||
|
|
||
|
.Ldone_v8:
|
||
|
#ifndef __ARMEB__
|
||
|
vrev64.8 $Xl,$Xl
|
||
|
#endif
|
||
|
vext.8 $Xl,$Xl,$Xl,#8
|
||
|
vst1.64 {$Xl},[$Xi] @ write out Xi
|
||
|
|
||
|
___
|
||
|
$code.=<<___ if ($flavour !~ /64/);
|
||
|
vldmia sp!,{d8-d15} @ 32-bit ABI says so
|
||
|
___
|
||
|
$code.=<<___;
|
||
|
ret
|
||
|
.size gcm_ghash_v8,.-gcm_ghash_v8
|
||
|
___
|
||
|
}
|
||
|
$code.=<<___;
|
||
|
.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
|
||
|
.align 2
|
||
|
___
|
||
|
|
||
|
if ($flavour =~ /64/) { ######## 64-bit code
|
||
|
sub unvmov {
|
||
|
my $arg=shift;
|
||
|
|
||
|
$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
|
||
|
sprintf "ins v%d.d[%d],v%d.d[%d]",$1,($2 eq "lo")?0:1,$3,($4 eq "lo")?0:1;
|
||
|
}
|
||
|
foreach(split("\n",$code)) {
|
||
|
s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or
|
||
|
s/vmov\.i8/movi/o or # fix up legacy mnemonics
|
||
|
s/vmov\s+(.*)/unvmov($1)/geo or
|
||
|
s/vext\.8/ext/o or
|
||
|
s/vshr\.s/sshr\.s/o or
|
||
|
s/vshr/ushr/o or
|
||
|
s/^(\s+)v/$1/o or # strip off v prefix
|
||
|
s/\bbx\s+lr\b/ret/o;
|
||
|
|
||
|
s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers
|
||
|
s/@\s/\/\//o; # old->new style commentary
|
||
|
|
||
|
# fix up remainig legacy suffixes
|
||
|
s/\.[ui]?8(\s)/$1/o;
|
||
|
s/\.[uis]?32//o and s/\.16b/\.4s/go;
|
||
|
m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument
|
||
|
m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments
|
||
|
s/\.[uisp]?64//o and s/\.16b/\.2d/go;
|
||
|
s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
|
||
|
|
||
|
print $_,"\n";
|
||
|
}
|
||
|
} else { ######## 32-bit code
|
||
|
sub unvdup32 {
|
||
|
my $arg=shift;
|
||
|
|
||
|
$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
|
||
|
sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
|
||
|
}
|
||
|
sub unvpmullp64 {
|
||
|
my ($mnemonic,$arg)=@_;
|
||
|
|
||
|
if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
|
||
|
my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
|
||
|
|(($2&7)<<17)|(($2&8)<<4)
|
||
|
|(($3&7)<<1) |(($3&8)<<2);
|
||
|
$word |= 0x00010001 if ($mnemonic =~ "2");
|
||
|
# since ARMv7 instructions are always encoded little-endian.
|
||
|
# correct solution is to use .inst directive, but older
|
||
|
# assemblers don't implement it:-(
|
||
|
sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
|
||
|
$word&0xff,($word>>8)&0xff,
|
||
|
($word>>16)&0xff,($word>>24)&0xff,
|
||
|
$mnemonic,$arg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
foreach(split("\n",$code)) {
|
||
|
s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers
|
||
|
s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers
|
||
|
s/\/\/\s?/@ /o; # new->old style commentary
|
||
|
|
||
|
# fix up remainig new-style suffixes
|
||
|
s/\],#[0-9]+/]!/o;
|
||
|
|
||
|
s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or
|
||
|
s/vdup\.32\s+(.*)/unvdup32($1)/geo or
|
||
|
s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or
|
||
|
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
|
||
|
s/^(\s+)b\./$1b/o or
|
||
|
s/^(\s+)ret/$1bx\tlr/o;
|
||
|
|
||
|
print $_,"\n";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
close STDOUT; # enforce flush
|